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A Low Latency SISO with Application to Broadband
Turbo Decoding

Peter A. Beerel, Member, IEEE,and Keith M. Chugg, Member, IEEE

Abstract—The standard algorithm for computing the soft-in-
verse of a finite-state machine [i.e., the soft-in/soft-out (SISO)
module] is the forward–backward algorithm. These forward
and backward recursions can be computed in parallel, yielding
an architecture with latency ( ), where is the block size.
We demonstrate that the standard SISO computation may be
formulated using a combination of prefix and suffix operations.
Based on well-known tree-structures for fast parallel prefix
computations in the very large scale integration (VLSI) literature
(e.g., tree adders), we propose a tree-structured SISO that has
latency (log

2
). The decrease in latency comes primarily

at a cost of area with, in some cases, only a marginal increase
in computation. We discuss how this structure could be used to
design a very high throughput turbo decoder or, more generally,
an iterative detector. Various subwindowing and tiling schemes
are also considered to further improve latency.

Index Terms—Iterative detection/decoding, parallel prefix com-
putations, turbo coding.

I. INTRODUCTION

CALCULATING the “soft-inverse” of a finite-state ma-
chine (FSM) is a key operation in many data detection/

decoding algorithms. Perhaps the most appreciated application
is iterative decoding of concatenated codes, such as turbo
codes [1], [2]. However the soft-in/soft-out (SISO) module
[3] is widely applicable in iterative and noniterative receivers
and signal processing devices (e.g., [4]–[7]). The soft-outputs
generated by a SISO may also be thresholded to obtain optimal
hard decisions (e.g., producing the same decisions as the Viterbi
algorithm [8] or the Bahl algorithm [9]). The general trend in
many applications is toward higher data rates and, therefore,
fast algorithms and architectures are desired.

There are two performance (speed) aspects of a data de-
tection circuit architecture that are relevant to this paper. The
first is throughputwhich is a measurement of the number of
bits per second the architecture can decode. The second is
latencywhich is the end-to-end delay for decoding a block of

bits. Nonpipelinedarchitectures are those that decode only
one block at a time and for which the throughput is simply
divided by the latency.Pipelined architectures, on the other
hand, may decode multiple blocks simultaneously shifted in
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time [10], thereby achieving much higher throughput than their
nonpipelined counterparts.

Depending on the application, the throughput and/or latency
of the data detection hardware is important. For example, the la-
tency associated with interleaving in a turbo-coded system with
relatively low data rate (less than 100 kb/s) will likely domi-
nate the latency of the iterative decoding hardware. For future
high-rate systems, however, the latency due to the interleaver
may become relatively small, making the latency of the decoder
significant. While pipelined decoders [10] can often achieve the
throughput requirements, such techniques generally do not sub-
stantially reduce latency. In addition, sometimes latency has a
dramatic impact on overall system performance. For example,
in a data storage system (e.g., magnetic hard drives), latency
in the retrieval process has a dramatic impact on the perfor-
mance of the microprocessor and the overall computer. Such
magnetic storage channels use high-speed Viterbi processing
with turbo-coded approaches suggested recently [11], [12].

The standard SISO algorithm is the forward–backward al-
gorithm. The associated forward and backward recursion steps
can be computed in parallel for all of the FSM states at a given
time, yielding an architecture with computational com-
plexity and latency, where is the block size. The key result of
this paper is the reformulation of the standard SISO computa-
tion using a combination of prefix and suffix operations, which
leads to an architecture with latency.1 This architecture
is based on a well-known tree-structure for fast parallel prefix
computations in the very large scale integration (VLSI) litera-
ture (e.g., fast adders [13], [14]), so we refer to it as atree-SISO.

This exponential decrease in latency for the tree-SISO comes
at the expense of increased computational complexity and area.
The exact value of these costs depends on the FSM structure
(e.g., the number of states) and the details of the implementa-
tion. However, for a four-state convolutional code, such as those
often used as constituent codes in turbo codes, the tree-SISO
architecture achieves latency with computational com-
plexity of . Note that, for this four-state example, the
computational complexity of tree-SISO architecture increases
sublinearly with respect to the associated speedup. This is better
than well-studied linear-scale solutions to the Viterbi algorithm
(e.g., [15]); the generalization of which to the SISO problem is
not always clear. For this four-state code example, the area as-
sociated with the -latency tree-SISO is .

After formally defining the SISO and prefix–suffix operations
in Section II, we describe the reformulation and corresponding
tree-SISO architecture in Sections III and IV, respectively. Com-
patibly of the tree-SISO with known latency reduction methods

1We uselg to denotelog .
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is discussed in Section V. We conclude with a discussion of
the architecture’s potential applications, feasibility, and perfor-
mance given current VLSI trends. Detailed computational com-
plexity and hardware analyses appear in Appendices I and II.

II. BACKGROUND

A. SISO Modules

For concreteness, we consider a specific class of finite state
machines with no parallel state transitions and a generic-state
trellis. Such a trellis has up to transitions departing and
entering each state. The FSM is defined by the labeling of the
state transitions by the corresponding FSM input and FSM
output. Let be a
trellis transition from state at time to state in response
to input . Since there are no parallel state transitions,is
uniquely defined by any of these representations. Given that
the transition occurs, the FSM output is .2

Consider the FSM as a system that maps a digital input se-
quence to a digital output sequence . A marginal soft-in-
verse, or SISO, of this FSM can be defined as a mapping of
soft-in (SI) information on the inputs SI and outputs SI ,
to soft-output (SO) information for and/or . The mapping
is defined by the combining and marginalization operators used.
It is now well-understood that one need only consider one spe-
cific reasonable choice for marginalization and combining oper-
ators and the results easily translate to other operators of interest
[13, Section 26.4], [16]–[18]. Thus, we focus on the min-sum
marginalization-combining operation with the results translated
to max-product, sum-product, min-sum, and max-sum [19] in
the standard fashion. In all cases, let the indicesand de-
fine the time boundaries of thecombining windowor span used
in the computation of the soft-output for a particular quantity
[e.g., , , , , ,
etc.].3 For min-sum marginalization-combining, theminimum
sequence metric (MSM)of a quantity is the metric (or length)
of the shortest path or sequence in a combining window or span
that is consistent with the conditional value of. Specifically,
the MSM is defined as4

MSM (1)

(2)

SI SI (3)

where the set of transitions starting at time and ending at
time that are consistent with is denoted and
implicitly defines a sequence of transitions

2Note that, for generality, we allow the mapping from transitions to outputs
to be dependent onk.

3In generalK andK are functions ofk. For notational compactness, we
do not explicitly denote this dependency.

4As is the standard convention, the metric of a transition that cannot occur
under the FSM structure is interpreted to be infinity.

. Depending on the specific application, one or both of the
following “extrinsic” quantities will be computed

SO MSM SI (4)

SO MSM SI (5)

Because the system on which the SISO is defined is an FSM,
the combining and marginalization operations in (1) and (2)
can be computed efficiently. The traditional approach is the
forward–backward algorithm which computes the MSM of the
states recursively forward and backward in time. Specifically,
for the standardfixed-intervalalgorithm based on soft-in for
transitions , , we have the following
recursion based on add-compare-select (ACS) operations

MSM (6)

(7)

MSM (8)

(9)

where is initialized according to available edge infor-
mation and is set equal to a constant for each state.5

Note that, since there arepossible values for the state, these
state metrics can be viewed as vectors and . The
final soft-outputs in (4) and (5) are obtained by marginalizing
over the MSM of the transitions

SO

SI

(10)

where is either or . We refer to the operation in (10) as
a completion operation.

While the forward–backward algorithm is computationally
efficient, straightforward implementations of it have large la-
tency [i.e., ] due to the ACS bottleneck in computing the
causal and anticasual state MSMs.

B. Prefix and Suffix Operations

A prefix operation is defined as a generic form of compu-
tation that takes in inputs and produces
outputs according to the following [13, Sec-
tion 29.2.2], [14]:

(11)

(12)

where is anyassociative binary operator.
Similarly, a suffix operation can be defined as a generic form

of computation that takes ininputs and pro-
duces outputs according to

(13)

(14)

5Any tail bit information can be enforced through the MI(b ) terms in the
tail. In most cases, this can also be achieved through nonuniform initialization
of b (s .
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where is anyassociative binary operator. Notice that a suffix
operation is simply a (backward) prefix operation anchored at
the other edge.

Prefix and suffix operations are important since they enable a
class of algorithms that can be implemented with low latency
using tree-structured architectures. The most notable realiza-
tions of this concept are VLSI -bit tree adders with latency

[13], [20], [14].

III. REFORMULATION OF THESISO OPERATION

The proposed low-latency architecture is derived by for-
mulating the SISO computations in terms of a combination
of prefix and suffix operations. To obtain this formula-
tion, define , for , as the MSM of state
pairs and based on the soft-inputs between them, i.e.,

MSM . The set of MSMs
can be considered an matrix . The causal state
MSMs can be obtained from by marginalizing
(e.g., minimizing) out the condition on . The backward state
metrics can be obtained in a similar fashion. Specifically, for
each conditional value of

(15)

(16)

With this observation, the key step of the algorithm is to com-
pute and for . Note that
the inputs of the algorithm are the one-step transition metrics
which can be written as for .
To show how this algorithm can be implemented with a prefix
and suffix computation, we define a min-sum fusion operator on

matrices that inputs two such matrices, one with a left-edge
coinciding with the right-edge of the other, and marginalizes out
the midpoint to obtain a pairwise state-MSM with larger span.
Specifically, given and , we define a fu-
sion operator, or operator by

(17)

Note that the operator is an associative binary operator that
accepts two matrices and returns one matrix. This is illustrated
in Fig. 1. With this definition and for

can be computed using the prefix and suffix
operations as follows

In general, a SISO algorithm can be based on the decoupling
property of state-conditioning. Specifically, conditioning on all
possible FSM state values at time, the shortest path problems
(e.g., MSM computation) on either side of this state condition
may be solved independently and then fused together (e.g., as

Fig. 1. C fusion operation.

performed by the -fusion operator). More generally, the SISO
operation can be decoupled based on a partition of the observa-
tion interval with each subinterval processed independently and
then fused together. For example, the forward–backward algo-
rithm is based on a partition to the single-transition level with
the fusing taking placesequentiallyin the forward and back-
ward directions. In contrast, other SISO algorithms may be de-
fined by specifying the partition and a schedule for fusing to-
gether the solutions to the sub-problems. This may be viewed
as specifying an association scheme to the above prefix–suffix
operations (i.e., grouping with parentheses).

The -fusion operations may be simplified in some cases
depending on the association scheme. For example, the for-
ward–backward algorithm replaces all-fusion operations by
the much simpler forward and backward ACSs. However, la-
tency is also a function of the association scheme. In the next
section, we present an architecture based on a pairwise tree-
structured grouping. This structure allows only a small subset
of the -fusion operations to be simplified but facilitates a sig-
nificant reduction in latency compared to the forward–backward
algorithm by fusing solutions to the subproblems in aparallel
instead of sequential manner.

IV. L OW-LATENCY TREE-SISO ARCHITECTURES

There are many known low-latency parallel architectures
based on binary tree-structured groupings of prefix operations
[20], [13], [14] that can be adopted to SISOs. All of these
have targeted -bit adder design where the binary associative
operator is a simple one-bit addition. In fact, to the best of our
knowledge, this is the first application of parallel prefix–suffix
architectures to an algorithm based on binary associative
operators that are substantially more complex than one-bit
addition. The known parallel prefix architectures trade reduced
area for higher latency and account for a secondary restriction
of limited fanout of each computational module. This latter
restriction is important when the computational modules are
small and have delay comparable to the delay of wires and
buffers (e.g., in adder design). The fusion operators, however,
are relatively large. Consequently, given current VLSI trends,
they will dominant the overall delay for the foreseeable future.
Thus, we propose to adopt an architecture which minimizes
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Fig. 2. Fusion module array for combining the complete set ofCmatrices on[k ; k +K] and[k +K; k +2K] to obtain the complete set on[k ; k +2K].

latency with the minimal number of computational modules
without regard to fanout [14].

Specifically, the forward and backward metrics, and
, for can be obtained using a hierarchal

tree-structure based on thefusion-module(FM) array shown in
Fig. 2. We define acomplete setof matrices on the interval

as the matrices and
for along with

. This is the MSM information for all state pairs
on the span of steps in the trellis with one state being either
on the left or right edge of the interval. The module in Fig. 2
fuses the complete sets ofmatrices for two adjacent span-
intervals to produce a complete set ofmatrices on the com-
bined span of size . Of the output matrices,
are obtained from the inputs without any processing.
The other output matrices are obtained by
fusion modules, or CFMs, which implement the operator.

The basic span- to span- FM array shown in Fig. 2 can
be utilized to compute the matrices on the entire interval in

stages. This is illustrated in Fig. 3 for the special case of
. Note that, indexing the stages from left to right (i.e.,

increasing span) as it is clear that there
are FM arrays in stage.

Because the final objective is to compute the causal and an-
ticausal state metrics; however, not all FMs need be CFMs for
all FM arrays. Specifically, the forward state metrics can
be obtained from and via

(18)

Similarly, the backward state metrics can be updated via

(19)

We refer to a processing module that produces anvector from
another vector and a matrix, as described in (18), as an
fusion module (fFM). A fusion module (bFM) is defined anal-
ogously according to the operation in (19). In Fig. 3, we have
indicated which FMs may be implemented as fFMs or bFMs.

The importance of this development is that the calculation of
the state metrics has latency. This is because the only
data dependencies are from one stage to the next and thus all
FM arrays within a stage and all FMs within an FM array can
be executed in parallel, each taking latency. The cost of
this low latency is the need for relatively large amounts of area.
One mitigating factor is that, because the stages of the tree op-
erate in sequence, hardware can be shared between stages. Thus,
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Fig. 3. Tree-SISO architecture forN = 16.

the stage that requires the most hardware dictates the total hard-
ware needed. A rough estimate of this isCFMs, each of which
involves -way ACS units with the associated registers. A
more detailed analysis is given in Appendix II which accounts
for the use of bFMs and fFMs whenever possible. For the ex-
ample in Fig. 3 and a four-state FSM (i.e., ), stage 2 has
the most CFMs (8) but stage 3 has the most processing com-
plexity. In particular, the complexity of stages
measured in terms of four four-way ACS units is 26, 36, 32, and
16, respectively. Thus, if hardware is shared between stages, a
total of 36 sets of four four-way ACS units is required to exe-
cute all FMs in a given stage in parallel. For applications when
this number of ACS units is prohibitive, one can easily reduce
the hardware requirements by as much as a factor ofwith a
corresponding linear increase in latency.

The implementation of the completion operation defined in
(10) should also be considered. The basic operation required
is a -way ACS unit where is the number of transitions
consistent with . Assuming that at most half of the transi-
tions will be consistent with , is upper bounded by .
Consequently, when is large, low-latency, area-efficient im-
plementations of the completion step may become an impor-

tant issue. Fortunately, numerous low-latency implementations
are well-known (e.g., [21]). The most straightforward may be
one which uses a binary tree of comparators and has latency of

. For small , this additional latency is not significant.
The computational complexity of the state metric calculations

can be computed using simple expressions based on Figs. 2 and
3. As shown in Appendix I, the total number of computations,
measured in units of -way ACS computations

(20)

For the example in Fig. 3 and a four-state FSM, an equivalent
of 110 sets of four four-way ACS operations are performed.
This is to be compared with the corresponding forward–back-
ward algorithm which would perform such oper-
ations and have baseline architectures with four times the la-
tency. In general, note that the for a reduction in latency from

to , the computation is increased by a factor of roughly
. Thus, while the associated complexity is

high, the complexity scaling is sublinear in. For small , this
is better than well-studied linear-scale solutions to low-latency
Viterbi algorithm implementations (e.g., [21], [15]).
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A. Optimizations for Sparse Trellises

The above architecture is most efficient for fully-connected
trellises. For sparser trellis structures, however, the initial pro-
cessing modules must process-matrices containing elements
set to , accounting for MSMs of pairs of states between which
there is no sequence of transitions, thereby wasting processing
power and latency. This section discusses optimizations that ad-
dress this inefficiency.

For concreteness, we consider as a baseline a standard
one-step trellis with states and exactly transitions
into and out of each state, in which, there exists exactly one
sequence of transitions to go from a given state at time
to a given state . One optimization is to precollapse the
one-step trellis into an -step trellis, , and apply
the tree-SISO architecture to the collapsed trellis. A second
optimization is to, wherever possible, simplify the fusion
modules. In particular, for a SISO on an-step trellis, the first

stages can be simplified to banks of additions that
simply add incoming pairs of multistep transition metrics.

More precisely, precollapsing involves adding themetrics
of the one-step transitions that constitute the transition met-
rics of eachsupertransition , for

. The SISO accepts these inputs and produces forward
and backward MSMs, and , for

. The key benefit of precollapsing is that
the number of SISO inputs is reduced by a factor of, thereby
reducing the number of stages required in the state metric com-
putation by . One disadvantage of precollapsing is that the
desired soft-outputs must be computed using a more complex,
generalized completion operation. Namely

SO

SI

(21)

The principle issue is that for each this comple-
tion step involves an ( )-way ACS rather than the
( )-way ACS required for the one-step trellis.

In order to identify the optimal (i.e., for minimum latency)
assuming both these optimizations are performed, the relative
latencies of the constituent operations are needed. While exact
latencies are dependent on implementation details, rough esti-
mates may still yield insightful results. In particular, we can as-
sume that both the precollapsing additions and ACS operations
for the state metric and completion operations are implemented
using binary trees of adders/comparators and, therefore, esti-
mate that their delay is logarithmic in the number of their inputs.
An important observation is that the precollapsing along with

simplified stages together addone-step transition metrics
(producing the transition metrics for a fully-connected-step
trellis) and thus can jointly be implemented in an estimated
time units. In addition, the state metric ( )-way ACS units
take time units and the completion units ( )-way

Fig. 4. Tiled subwindow scheme based on the forward–backward algorithm.

ACSs take time units. Assuming maximal paral-
lelism, this yields a total latency of

(22)

It follows that the minimum latency occurs when is
minimum (subject to ), which occurs when .
This suggests that the minimum-latency architecture is one in
which the trellis is precollapsed into a fully-connected trellis
and more complex completion units are used to extract the soft
outputs from the periodic state metrics calculated.

The cost of this reduced latency is the additional area required
to implement the trees of adders that produce the-step transi-
tion metrics and the larger trees of comparators required to im-
plement the more complex completion operations. Note, how-
ever, that this area overhead can be mitigated by sharing adders
and comparators among stages of each tree and, in some cases,
between trees with only marginal impact on latency.

V. USE IN TILED SUBWINDOW SCHEMES

One known method of reducing latency and improving
throughput of computing the soft-inverse is to use smaller com-
bining windows.6 We defineminimum half-window (MHW)
algorithms as those in which the combing window edges
and satisfy and ,
for —i.e., for every point away from the
edge of the observation window, the soft-output is based on a
subwindow with left and right edges at leastpoints from .

The traditional forward–backward algorithm can be used on
subwindows to obtain a MHW-SISO. One particular scheme is
thetiled subwindow techniquein which combining windows of
length are used to derive all state metrics. In this scheme,
as illustrated in Fig. 4, the windows are tiled with overlap of
length and there are such windows. The for-
ward–backward recursion on each interior subwindow yields

6We emphasize that when only a partial combining window is used, the actual
soft-inverse is not computed. However, for sufficiently large combining win-
dows, the soft-inverse should be well-approximated.
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soft outputs, so there is anoverlap penaltywhich increases as
decreases.

For the th such window, the forward and backward state met-
rics are computed using the recursions, modified from that of (7)
and (9)

MSM (23)

MSM (24)

If all windows are processed in parallel, this architecture yields
a latency of .

The tree-SISO algorithm can be used in a MHW scheme
without any overlap penalty and with latency. Con-
sider combining windows of size and let the tree-SISO
compute and for

and . Then, use one addi-
tional stage of logic to compute the forward and backward state
metrics for all time indices that fall within theth window,

, as follows:7

MSM

(25)

MSM

(26)

The inner minimization corresponds to a conversion fromin-
formation to ( ) information as in (15) and (16). The outer
minimization corresponds to an fFM or bFM. The order of this
minimization was chosen to minimize complexity. This is re-
flected in the example of this approach shown in Fig. 5, where
the last stage of each of the four tree-SISOs is modified to exe-
cute the above minimizations in the proposed order. We refer to
the module that does this as a2Cfb module. This module may be
viewed as a specialization of the stage 2 center CFMs in Fig. 3.
The above combining of subwindow tree-SISO outputs adds one
additional processing stage so that the required number of stages
of FMs is .

A. Computational Complexity Comparison

The computational complexity of computing the state metrics
using the forward–backward tiled scheme is the number of win-
dows times the complexity of computing the forward–backward

7This should be interpreted withC(s ; s ) replaced by initial left-edge
information and similarly forC(s ; s ).

Fig. 5. Tiled subwindow approach with four tree-SISOs of window size 4 for
N = 16 to implement ad = 4 MHW SISO.

algorithm on each window. In terms of -way ACSs, this can
be approximated for large via

(27)

The computational complexity of computing the state metrics
using the tree-SISO tiled scheme in terms of -way ACSs
can be developed similarly and is

(28)

Determining which scheme has higher computational com-
plexity depends on the relative sizes ofand . If is reduced,
the standard forward–backward scheme reduces in latency but
increases in computational complexity because the number of
overlapped windows increase. Since the tiled tree-SISO archi-
tecture has no overlap penalty, asis decreased in a tiled for-
ward–backward scheme, the relative computational complexity
trade-off becomes more favorable to the tree-SISO approach. In
fact, for , the computational complexities of the
tree-SISO is lower that the tiled forward–backward scheme.
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VI. DESIGN EXAMPLE: FOUR-STATE PCCC

The highly parallel architectures considered require large im-
plementation area. In this section, we consider an example for
which the area requirements are most feasible for implemen-
tation in the near future. Specifically, we consider an iterative
decoder based on four-state sparse (one-step) trellises. Consid-
ering larger will yield more impressive latency reductions
for the tree-SISO. This is because the latency-reduction ob-
tained by the tree-SISO architecture relative to the parallel tiled
forward–backward architecture depends on the minimum half-
window size. One expects that good performance requires a
value of that grows with the number of states (i.e., similar to
the rule-of-thumb for traceback depth in the Viterbi algorithm
[22] for sparse trellises). In contrast, considering precollapsing
will yield less impressive latency reductions. For example, if

is required for a single-step trellis, then an effective
value of would suffice for a two-step trellis. The latency
reduction factor associated with the tree-SISO for the former
would be approximately four but only 8/3 for the latter. How-
ever, larger and/or precollapsing yields larger implementation
area and is not in keeping with our desire to realistically assess
the near-term feasibility of these algorithms.

In particular, we consider a standard parallel concatenated
convolutional code (PCCC) with two four-state constituent
codes [1], [2]. Each of the recursive systematic constituent
codes generates parity using the generator polynomial

with parity bits punctured
to achieve an overall systematic code with rate 1/2.

In order to determine the appropriate value forto be used in
the MHW-SISOs, we ran simulations where each SISO used a
combining window to compute the soft-
output at time . This is exactly equivalent to the SISO op-
eration obtained by a tiled forward–backward approach with

. Note that, since is the size of all (interior) half-windows
for the simulations, any architecture based on a MHW-SISO
with will perform at least as well (e.g., tiled for-
ward–backward, -tiled tree-SISO, etc.). Simulation results are
shown in Fig. 6 for an interleaver size of with
min-sum marginalization and combining and ten iterations. The
performance is shown for variousalong with the performance
of the fixed-interval ( ) SISO. No significant iteration
gain is achieved beyond ten iterations for any of the configura-
tions. The results indicate that yields performance near
the fixed-interval case. This is consistent with the rule-of-thumb
of five to seven times the memory for the traceback depth in a
Viterbi decoder (i.e., roughly is expected to be
sufficient).

Since the required window size is , the latency im-
provement of a tree-SISO relative to a tiled forward–backward
scheme is close to . The computational com-
plexity of these two approaches is similar and depends on the de-
tails of the implementation and the choice offor the tiled for-
ward–backward approach. A complete fair comparison would
require a detailed implementation of the two approaches. Below,
we summarize a design for the tree-SISO based subwindow ar-
chitecture.

Fig. 6. Simulation results for a standard turbo code decoded using SISOs with
various half-window sizes,N = 1024, and ten iterations.

A factor that impacts the area of the architecture is the bit-
width of the data units. Simulation results suggest that an
eight-bit datapath is sufficient. Roughly speaking, a tree-based
architecture for this example would require 1024 sets of sixteen
four-way ACS units along with associated output registers to
store intermediate state metric results. Each four-way ACS unit
can be implemented with an eight-bit 4:1 multiplexor, four
eight-bit adders, six eight-bit comparators, and one eight-bit
register [21]. Our initial VLSI designs indicate that these
units require approximately 2250 transistors. Thus, this yields
an estimate of Million transistors.
This number or logic transistors pushes the limit of current
VLSI technology but should soon be feasible. We consider an
architecture in which one clock cycle is used per stage of the
tree at a 200 MHz clock frequency. For , each SISO
operation can be performed in six such clock cycles (using
one clock for the completion step). Moreover, we assume a
hard-wired interleaver comprising two rows of 1024 registers
with interconnection an network. Such an interleaver would
be larger than existing memory-based solutions [10] but could
have a latency of one clock cycle. Consequently, one iteration
of the turbo decoder, consisting of two applications of the
SISO, one interleaving, and one deinterleaving, requires 14
clock cycles. Assuming ten iterations, the decoding of 1024
bits would take 140 clock cycles, or a latency of just 700 ns.

This latency also implies a very high throughput which can
further be improved with standard pipelining techniques. In
particular, a nonpipelined implementation has an estimated
throughput of 1024 bits per 700 ns 1.5 Gb/s. Using the
tree-SISO architecture, one could also pipeline across inter-
leaver blocks as described by Maseraet al. [10]. In particular,
20 such tiled tree-SISOs and associated interleavers can be
used to achieve a factor of 20 in increased throughput, yielding
a throughput of 30 Gb/s.

Moreover, unlike architectures based on the forward–back-
ward algorithm, the tree-SISO can easily be internally pipelined,
yielding even higher throughputs with linear hardware scaling.
In particular, if dedicated hardware is used for each stage of
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the tree-SISO, pipelining the tree-SISO internally may yield
another factor of in throughput, with no increase in la-
tency. For window sizes of , the tree-based architecture
could support over 120 Gb/s. That said, it is important to realize
that with current technology such hardware costs may be be-
yond practical limits. Given the continued increasing densities
of VLSI technology, however, even such aggressive architec-
tures may become cost-effective in the future.

VII. CONCLUSION

Based on the interpretation of the SISO operation in terms
of parallel prefix/suffix operations, a family of tree-struc-
tured architectures were suggested. Compared to the baseline
forward– backward algorithm architecture, the tree-SISO
architecture reduces latency from to . More
recently, alternative tree-structured SISOs have been developed
that trade a linear increase in latency for substantially lower
complexity and area. In particular, other existing architectures
for parallel prefix/suffix computations from the VLSI literature
have been applied to the SISO computation [23]. Also, it has
been demonstrated that tree-structured SISOs can be derived as
an application of message-passing on a binary tree model for
the FSM [24], [18].

An efficient SISO design may not be built using a single tree-
SISO but rather using tree-SISOs as important components. For
example, in this paper, many tree-SISOs were used to comprise
a SISO using tiled subwindows. Latency in this case is reduced
from linear in the minimum half-window size () for fully-par-
allel tiled architectures based on the forward–backward algo-
rithm, to logarithmic in for tiled tree-SISOs. More recently, a
high-radix SISO (e.g., 16 steps) was designed using a tree-SISO
to compute the multistep metrics with low latency [23].

In general, the potential latency advantages of the tree-SISO
are clearly most significant for applications requiring large
combining windows. For most practical designs, this is ex-
pected when the number of states increases. In the one detailed
four-state tiled-window example considered, the latency was
reduced by a factor of approximately four. For systems with
binary inputs and states, one would expect that
would be sufficient. Thus, there is a potential reduction in
latency of approximately which becomes
quite significant as increases. However, the major challenge
in achieving this potential latency improvement is the area
required for the implementation. In particular, building a
high-speed -way ACS unit for large is the key challenge.
Techniques to reduce this area requirement without incurring
performance degradations (e.g., bit-serial architectures) are
promising areas of research. In fact, facilitating largermay
allow the use of smaller interleavers which alleviates the area
requirements and reduces latency.

APPENDIX I
COMPUTATION COMPLEXITY ANALYSIS

The number of required stages is , with FM
arrays in stage. Each of these FM arrays in stagespan steps

in the trellis and contains FMs. Thus, the total number of
FMs in stage is . The total number of
fusion operations is therefore

(29)

For the example, in Fig. 3, this reduces to .
Using Fig. 3 as an example, it can be seen that the number

of FMs that can be implemented as fFMs in stageis
. In the special case of , this must be interpreted as

replacing the CFMs by fFMs and bFMs. For
example, in the fourth stage in Fig. 3, the 15 CFMs implied
by Fig. 2 may be replaced by eight fFMs and eight bFMs, as
shown. The number of FMs that can implemented as bFMs is the
same—i.e., . It follows that the number
of CFMs required at stageis

(30)

(31)

where is the Kronecker delta. The total number of fusion
modules is therefore

(32)

(33)

Comparing (29) and (33), it is seen that, for relatively large,
the fraction of FMs that must be CFMs is .
For smaller , the fraction is slightly larger. For example, in
Fig. 3, and there are 20 CFMs.

The CFM is approximately (i.e., the number of states) times
more complex than the fFM and bFM operations. This can be
seen by comparing (17) with (18) and (19). Specifically, the op-
erations in (17)–(19) involve -way ACSs. For the CFM, an

-way ACS must be carried out for every possible state pair
in (17)—i.e., state pairs. The -way ACS oper-

ations in (18), and (19) need only be computed for each of the
states . Thus, taking the basic unit of computation to be
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-way ACS on an -state trellis, the total number of these com-
putations required for stageis

(34)

Summing over stages, we obtain the total number of computa-
tions, measured in units of -way ACS computations

(35)

which is restated in (20).

APPENDIX II
HARDWARE RESOURCEREQUIREMENTS

The maximum of over is of interest because it deter-
mines the minimum hardware resource requirements to achieve
the desired minimum latency. This is because the fusion mod-
ules can be shared between stages with negligible impact on la-
tency.

The maximum of can be found by considering the
condition on for which . Specifically,
if

(36)

(37)

(38)

It follows that has no local maxima and

(39)

can be used to find the maximizer of . Specifically, if
(39) yields , then the maximum occurs at, otherwise
( ), the and cases should be compared
to determine the maximum complexity stage.8 For , (39)
can be reduced to

(40)

since for .
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